[1] Ryckebosch, E., Drouillon, M. ve Vervaeren, H., Techniques for transformation of biogas to biomethane, Biomass and bioenergy, 35,5 (2011) 1633-1645.
[2] Yan, C., Zhang, L., Luo, X. ve Zheng, Z., Influence of influent methane concentration on biogas upgrading and biogas slurry purification under various LED (light-emitting diode) light wavelengths using Chlorella sp, Energy, 69 (2014) 419-426.
[3] Zhu, L., Yan, C. ve Li, Z., Microalgal cultivation with biogas slurry for biofuel production, Bioresource technology, 220 (2016) 629-636.
[4] Singh, A. ve Olsen, S.I., A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels, Applied Energy, 88,10 (2011) 3548-3555.
[5] Behera, B., Acharya, A., Gargey, I.A., Aly, N. ve Balasubramanian, P., Bioprocess engineering principles of microalgal cultivation for sustainable biofuel production, Bioresource Technology Reports, 5 (2019) 297-316.
[6] Astals, S., Nolla-Ardèvol, V. ve Mata-Alvarez, J., Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: Biogas and digestate, Bioresource technology, 110 (2012) 63-70.
[7] Juárez, M.F.-D., Waldhuber, S., Knapp, A., Partl, C., Gómez-Brandón, M. ve Insam, H., Wood ash effects on chemical and microbiological properties of digestate-and manure-amended soils, Biology and fertility of soils, 49,5 (2013) 575-585.
[8] Kobayashi, N., Noel, E.A., Barnes, A., Watson, A., Rosenberg, J.N., Erickson, G. ve Oyler, G.A., Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure, Bioresource technology, 150 (2013) 377-386.
[9] Liu, J. ve Vyverman, W., Differences in nutrient uptake capacity of the benthic filamentous algae Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. under varying N/P conditions, Bioresource technology, 179 (2015) 234-242.
[10] Solmaz, A. ve Işık, M., Microalgae production with microalgal submerged membrane photo bioreactor (msmpbr) and examining the nutrient removal yield, Sigma Journal of Engineering and Natural Sciences-Sigma Mühendislik ve Fen Bilimleri Dergisi, (2017).
[11] Chisti, Y., Biodiesel from microalgae, Biotechnology Advances, 25,3 (2007) 294-306.
[12] Sharma, Y.C. ve Singh, V., Microalgal biodiesel: a possible solution for India’s energy security, Renewable and Sustainable Energy Reviews, 67 (2017) 72-88.
[13] Zhu, L., Microalgal culture strategies for biofuel production: a review, Biofuels, Bioproducts and Biorefining, 9,6 (2015) 801-814.
[14] Singh, A., Nigam, P.S. ve Murphy, J.D., Mechanism and challenges in commercialisation of algal biofuels, Bioresource technology, 102,1 (2011) 26-34.
[15] Medeiros, D.L., Sales, E.A. ve Kiperstok, A., Energy production from microalgae biomass: carbon footprint and energy balance, Journal of Cleaner Production, 96 (2015) 493-500.
[16] Xu, M., Bernards, M. ve Hu, Z., Algae-facilitated chemical phosphorus removal during high-density Chlorella emersonii cultivation in a membrane bioreactor, Bioresource technology, 153 (2014) 383-387.
[17] Elcik, H. ve Çakmakcı, M., Mikroalglerden Yenilenebilir Biyoyakıt Üretimi, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 32,3 (2017).
[18] Razzak, S.A., Ali, S.A.M., Hossain, M.M. ve De Lasa, H., Biological CO2 fixation with production of microalgae in wastewater–a review, Renewable and Sustainable Energy Reviews, 76 (2017) 379-390.
[19] Chen, C.-Y., Yeh, K.-L., Aisyah, R., Lee, D.-J. ve Chang, J.-S., Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review, Bioresource technology, 102,1 (2011) 71-81.
[20] Kim, S., Park, J.-e., Cho, Y.-B. ve Hwang, S.-J., Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions, Bioresource technology, 144 (2013) 8-13.
[21] McGinn, P.J., Dickinson, K.E., Bhatti, S., Frigon, J.-C., Guiot, S.R. ve O’Leary, S.J., Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations, Photosynthesis Research, 109,1-3 (2011) 231-247.
[22] Moreno-Garcia, L., Adjallé, K., Barnabé, S. ve Raghavan, G., Microalgae biomass production for a biorefinery system: recent advances and the way towards sustainability, Renewable and Sustainable Energy Reviews, 76 (2017) 493-506.
[23] Suali, E. ve Sarbatly, R., Conversion of microalgae to biofuel, Renewable and Sustainable Energy Reviews, 16,6 (2012) 4316-4342.
[24] Slegers, P., Lösing, M., Wijffels, R., Van Straten, G. ve Van Boxtel, A., Scenario evaluation of open pond microalgae production, Algal Research, 2,4 (2013) 358-368.
[25] Singh, R. ve Sharma, S., Development of suitable photobioreactor for algae production–A review, Renewable and Sustainable Energy Reviews, 16,4 (2012) 2347-2353.
[26] Bilad, M., Discart, V., Vandamme, D., Foubert, I., Muylaert, K. ve Vankelecom, I.F., Coupled cultivation and pre-harvesting of microalgae in a membrane photobioreactor (MPBR), Bioresource technology, 155 (2014) 410-417.
[27] Chen, C.-Y., Zhao, X.-Q., Yen, H.-W., Ho, S.-H., Cheng, C.-L., Lee, D.-J., Bai, F.-W. ve Chang, J.-S., Microalgae-based carbohydrates for biofuel production, Biochemical Engineering Journal, 78 (2013) 1-10.
[28] Zhang, W., Wang, J., Wang, J. ve Liu, T., Attached cultivation of Haematococcus pluvialis for astaxanthin production, Bioresource technology, 158 (2014) 329-335.
[29] Wan, M., Hou, D., Li, Y., Fan, J., Huang, J., Liang, S., Wang, W., Pan, R., Wang, J. ve Li, S., The effective photoinduction of Haematococcus pluvialis for accumulating astaxanthin with attached cultivation, Bioresource technology, 163 (2014) 26-32.
[30] Liu, T., Wang, J., Hu, Q., Cheng, P., Ji, B., Liu, J., Chen, Y., Zhang, W., Chen, X. ve Chen, L., Attached cultivation technology of microalgae for efficient biomass feedstock production, Bioresource technology, 127 (2013) 216-222.
[31] Blair, M.F., Kokabian, B. ve Gude, V.G., Light and growth medium effect on Chlorella vulgaris biomass production, Journal of Environmental Chemical Engineering, 2,1 (2014) 665-674.
[32] Kim, T.-H., Lee, Y., Han, S.-H. ve Hwang, S.-J., The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment, Bioresource technology, 130 (2013) 75-80.
[33] Chinnasamy, S., Ramakrishnan, B., Bhatnagar, A. ve Das, K., Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature, International Journal of Molecular Sciences, 10,2 (2009) 518-532.
[34] Rashid, N., Rehman, M.S.U., Sadiq, M., Mahmood, T. ve Han, J.-I., Current status, issues and developments in microalgae derived biodiesel production, Renewable and Sustainable Energy Reviews, 40 (2014) 760-778.
[35] Wang, B., Li, Y., Wu, N. ve Lan, C.Q., CO2 bio-mitigation using microalgae, Applied Microbiology and Biotechnology, 79,5 (2008) 707-718.
[36] Jankowska, E., Sahu, A.K. ve Oleskowicz-Popiel, P., Biogas from microalgae: Review on microalgae's cultivation, harvesting and pretreatment for anaerobic digestion, Renewable and Sustainable Energy Reviews, 75 (2017) 692-709.
[37] Green, B.R. ve Durnford, D.G., The chlorophyll-carotenoid proteins of oxygenic photosynthesis, Annual Review of Plant Biology, 47,1 (2002) 685-714.
[38] Jin, H.-F., Lim, B.-R. ve Lee, K., Influence of nitrate feeding on carbon dioxide fixation by microalgae, Journal of Environmental Science and Health Part A, 41,12 (2006) 2813-2824.
[39] Larsdotter, K., Wastewater treatment with microalgae-a literature review, Vatten, 62,1 (2006) 31.
[40] Cai, T., Park, S.Y. ve Li, Y., Nutrient recovery from wastewater streams by microalgae: status and prospects, Renewable and Sustainable Energy Reviews, 19 (2013) 360-369.
[41] Razzak, S.A., Hossain, M.M., Lucky, R.A., Bassi, A.S. ve De Lasa, H., Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review, Renewable and Sustainable Energy Reviews, 27 (2013) 622-653.
[42] Bartley, M.L., Boeing, W.J., Dungan, B.N., Holguin, F.O. ve Schaub, T., pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis salina and invading organisms, Journal of applied phycology, 26,3 (2014) 1431-1437.
[43] Ying, K., Zimmerman, W. ve Gilmour, D., Effects of CO and pH on growth of the microalga Dunaliella salina, Journal of Microbial and Biochemical Technology, 6,3 (2014) 167-173.
[44] Zhu, J., Rong, J. ve Zong, B., Factors in mass cultivation of microalgae for biodiesel, Chinese Journal of Catalysis, 34,1 (2013) 80-100.
[45] Munoz, R. ve Guieysse, B., Algal–bacterial processes for the treatment of hazardous contaminants: a review, Water Research, 40,15 (2006) 2799-2815.
[46] Carlsson, A., van Beilen, J., Möller, R., Clayton, D. ve Bowles, D., Micro-and macro-algae: utility for industrial applications, outputs from the EPOBIO project, University of York. (2007).
[47] Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Malcata, F.X. ve Van Langenhove, H., Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions, TRENDS in Biotechnology, 28,7 (2010) 371-380.
[48] Yan, C., Zhu, L. ve Wang, Y., Photosynthetic CO2 uptake by microalgae for biogas upgrading and simultaneously biogas slurry decontamination by using of microalgae photobioreactor under various light wavelengths, light intensities, and photoperiods, Applied Energy, 178 (2016) 9-18.
[49] Zhao, Y., Sun, S., Hu, C., Zhang, H., Xu, J. ve Ping, L., Performance of three microalgal strains in biogas slurry purification and biogas upgrade in response to various mixed light-emitting diode light wavelengths, Bioresource technology, 187 (2015) 338-345.
[50] Wang, X., Gao, S., Zhang, Y., Zhao, Y. ve Cao, W., Performance of different microalgae-based technologies in biogas slurry nutrient removal and biogas upgrading in response to various initial CO2 concentration and mixed light-emitting diode light wavelength treatments, Journal of Cleaner Production, 166 (2017) 408-416.
[51] Luo, L., Lin, X., Zeng, F., Luo, S., Chen, Z. ve Tian, G., Performance of a novel photobioreactor for nutrient removal from piggery biogas slurry: Operation parameters, microbial diversity and nutrient recovery potential, Bioresource technology, 272 (2019) 421-432.
[52] Pizzera, A., Scaglione, D., Bellucci, M., Marazzi, F., Mezzanotte, V., Parati, K. ve Ficara, E., Digestate treatment with algae-bacteria consortia: A field pilot-scale experimentation in a sub-optimal climate area, Bioresource technology, 274 (2019) 232-243.