Cilt 2 Sayı 1 Makale 3

Biyo-devulkanizasyon: Atık Lastik Yönetiminde Çevre Dostu Bir Yaklaşım

Yazar(lar): Tercan Çataklı 1, Tuba Hande Ergüder 2,

Hızlı sanayileşme ve özellikle otomotiv sektöründeki büyümeye paralel olarak artan atık kauçuk miktarları 21. yüzyılda atık yönetiminde karşılaşılan en önemli zorluklardan birini oluşturmaktadır. Atık kauçukların sahip oldukları bağ yapısı nedeniyle doğada kendiliğinden yok olma süreleri çok uzundur. Ayrıca hiçbir ön işleme tabi tutulmadan hammadde olarak yeniden kullanılabilmesi / geri kazanımı da mümkün değildir. Bu nedenle son yıllarda kauçuk atıklarının yeniden kullanımı/geri dönüşümü ile alakalı çalışmalar hız kazanmıştır. Tüm dünyada üretilen toplam kauçuğun yaklaşık olarak %70’inin lastik sektöründe kullanılıyor olması, yapılan çalışmaların atık lastikler üzerine yoğunlaşmasına yol açmıştır. Atık lastiklerin yeniden kullanımı/geri dönüşümü konusunda birçok yeni yöntem geliştirilmiştir. Geliştirilen bu yöntemler arasında biyo-devulkanizasyon düşük enerji gereksinimi, kauçuk ana zincirine zarar vermeden seçici olarak S bağlarının koparılması ve çevreye duyarlı bir uygulama olması ile göze çarpmaktadır. Bu çalışmada, atık lastiklerin yönetiminde uygulanan yöntemler, özellikle de devulkanizasyon yöntemi anlatılmış ve biyo-devulkanizasyon konusuna odaklanılarak bu alanda yapılan çalışmalar incelenmiştir. Biyo-devulkanizasyonda dikkat edilmesi gereken faktörler ve ortam koşulları sunulmuş, atık lastiklerin geri kazanımı için biyo-devulkanizasyon yönteminin potansiyeli değerlendirilmiştir. Biyo-devulkanizasyon konusunda literatürde çok fazla çalışma olmamakla birlikte mevcut çalışmaların sonuçları gelecek için umut verici görünmektedir. 



Anahtar Kelime(ler): Recovery, rubber, bio-devulcanization, bio-desulfurization, Geri kazanım, kauçuk, biyo-devulkanizasyon, biyo-desülfürizasyon,

The increase in rubber waste production due to the rapid industrialization and especially the growth in automotive industry is one of the most important challenges in waste management of 21th century. Because of their network structure, natural degradation of rubber wastes lasts too long. Besides, the reuse / recovery of waste rubber without any pre-treatment is impossible. Therefore, the number of the studies about the reuse/recycle of waste tires has accelerated in recent years. Studies focus on waste tire rubbers because 70% of the rubber produced in the world is being used in tire industry. Many new methods were developed for reuse/recycle of waste tire rubber. One of the methods developed is bio-devulcanization, which attracts attention because of its low energy requirement, selectively breakage of S bonds without main chain scission and being an environmentally friendly method. In this study, the methods used in the management of waste tire rubber, in particular, the devulcanization method were explained and, by focusing on bio-devulcanization method, the research studies on bio-devulcanization have been investigated. The factors to be considered and the operational conditions of bio-devulcanization are presented and the potential of bio-devulcanization for waste tire management is evaluated. Although the studies about bio-devulcanization in literature are limited, the results obtained are found to be promising.



Keyword(s):Recovery, rubber, bio-devulcanization, bio-desulfurization,

  • [1] Ahmed, R., van de Klundert, A., & Lardinois, I. (1996). Rubber Waste Options for Small-scale Resource Recovery Urban Solid Waste Series 3. Netherlands: WASTE.
  • [2] Holst, O., Stenberg, B., & Christiansson, M. (1998). Biotechnological possibilities for waste tyre-rubber treatment. Biodegradation, 9(3-4), 301-310.
  • [3] Simpson, R. B. (Ed.). (2002). Rubber basics. iSmithers Rapra Publishing.
  • [4] Morawetz, H. (2000). History of rubber research. Rubber chemistry and technology, 73(3), 405-426.
  • [5] Imbernon, L., & Norvez, S. (2016). From landfilling to vitrimer chemistry in rubber life cycle. European Polymer Journal, 82, 347-376.
  • [6] Akiba, M., & Hashim, A. S. (1997). Vulcanization and crosslinking in elastomers. Progress in polymer science, 22(3), 475-521.
  • [7] Malaysian Rubber Board. (n.d.). Consumption of natural and synthetic rubber worldwide from 1990 to 2018 (in 1,000 metric tons). In Statista - The Statistics Portal, web sayfası: https://www.statista.com/statistics/275399/world-consumption-of-natural-and-synthetic-caoutchouc/, erişim tarihi: 28.08.2018.
  • [8] Karaağaç, B., Kalkan, M. E., & Deniz, V. (2017). End of life tyre management: Turkey case. Journal of Material Cycles and Waste Management, 19(1), 577-584.
  • [9] Asaro, L., Gratton, M., Seghar, S., & Hocine, N. A. (2018). Recycling of rubber wastes by devulcanization. Resources, Conservation and Recycling, 133, 250-262.
  • [10] WBCSD 2018 - World Business Council For Sustainable Development. Global ELT Management – A global state of knowledge on collection rates, recovery routes, and management methods, web sayfası: https://docs.wbcsd.org/2018/02/TIP/WBCSD_ELT_management_State_of_Knowledge_Report.pdf, erişim tarihi: 27.08.2018.
  • [11] Hu, M., Zhao, S., Li, C., Wang, B., Yao, C., & Wang, Y. (2014). The influence of different Tween surfactants on biodesulfurization of ground tire rubber by Sphingomonas sp. Polymer Degradation and Stability, 107, 91-97.
  • [12] Yao, C., Zhao, S., Hu, M., Wang, B., & Zhang, L. (2014). Half‐submerged cultivation method for the microbial desulfurization of waste latex rubber. Journal of Applied Polymer Science, 131(21).
  • [13] Cui, X., Zhao, S., & Wang, B. (2016). Microbial desulfurization for ground tire rubber by mixed consortium-Sphingomonas sp. and Gordonia sp. Polymer Degradation and Stability, 128, 165-171.
  • [14] European Commission [EC], (2018). Commission notice on technical guidance on the classification of waste (2018/C 124/01), web sayfası: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52018XC0409%2801%29, erişim tarihi: 01.08.2018.
  • [15] Ömrünü Tamamlamış Lastiklerin (ÖTL) Kontrolü Yönetmeliği, 2006, Çevre ve Şehircilik Bakanlığı.
  • [16] European Commission. (1999). Directive 1999/31/EC on the landfill of waste. Off J Eur Union L, 182, 1-19.
  • [17] ETRMA 2018 – European Tyre & Rubber Manufacturers’ Association (Belgium). ELT management in Europe, web sayfası: http://www.etrma.org/tyres/ELTs/ELT-management, erişim tarihi: 30.07.2018.
  • [18] Adhikari, B., De, D., & Maiti, S. (2000). Reclamation and recycling of waste rubber. Progress in polymer science, 25(7), 909-948.
  • [19] Downard, J., Singh, A., Bullard, R., Jayarathne, T., Rathnayake, C. M., Simmons, D. L., Wels, B. R., Spak, S. N., Peters, T., Beardslay, D., Stanier, C. O. (2015). Uncontrolled combustion of shredded tires in a landfill–Part 1: Characterization of gaseous and particulate emissions. Atmospheric Environment, 104, 195-204.
  • [20] Amari, T., Themelis, N. J., & Wernick, I. K. (1999). Resource recovery from used rubber tires. Resources Policy, 25(3), 179-188.
  • [21] Myhre, M., & MacKillop, D. A. (2002). Rubber recycling. Rubber Chemistry and Technology, 75(3), 429-474.
  • [22] Isayev, A. I. (2013). Recycling of rubbers. The Science and Technology of Rubber (Fourth Edition) (pp. 697-764).
  • [23] Sienkiewicz, M., Kucinska-Lipka, J., Janik, H., & Balas, A. (2012). Progress in used tyres management in the European Union: a review. Waste Management, 32(10), 1742-1751.
  • [24] Ulusal geri dönüşüm strateji belgesi ve eylem planı 2014-2017 (2014, 30 Aralık) Resmi Gazete (Sayı: 29221 (Mükerrer)). Web sayfası: http://www.resmigazete.gov.tr/eskiler/2014/12/20141230m1-12-1.pdf, erişim tarihi: 08.01.2019
  • [25] Atık Yönetimi Yönetmeliği (2015, 2 Nisan) Resmi Gazete (Sayı: 29314) Web sayfası: http://www.resmigazete.gov.tr/main.aspx?home=http://www.resmigazete.gov.tr/eskiler//2015/04/20150402.htm/20150402.htm&main=http://www.resmigazete.gov.tr/eskiler//2015/04/20150402.htm, erişim tarihi: 08.01.2019
  • [26] Sutanto, P., Picchioni, F., Janssen, L. P. B. M., Dijkhuis, K. A. J., Dierkes, W. K., & Noordermeer, J. W. (2006). State of the art: Recycling of EPDM rubber vulcanizates. International polymer processing, 21(2), 211-217.
  • [27] Jang, J. W., Yoo, T. S., Oh, J. H., & Iwasaki, I. (1998). Discarded tire recycling practices in the United States, Japan and Korea. Resources, conservation and recycling, 22(1-2), 1-14.
  • [28] Florida Department of Environmental Protection. Osborne Reef Waste Tire Removal Project, 2016, web sayfası: https://floridadep.gov/waste/permitting-compliance-assistance/content/osborne-reef-waste-tire-removal-project, erişim tarihi: 13.08.2018.
  • [29] Myhre, M., Saiwari, S., Dierkes, W., & Noordermeer, J. (2012). Rubber recycling: chemistry, processing, and applications. Rubber chemistry and technology, 85(3), 408-449.
  • [30] Pérez, G., Vila, A., Rincón, L., Solé, C., & Cabeza, L. F. (2012). Use of rubber crumbs as drainage layer in green roofs as potential energy improvement material. Applied Energy, 97, 347-354.
  • [31] Dijkhuis, K. A. J. (2008). Recycling of vulcanized EPDM-rubber: mechanistic studies into the development of a continuous process using amines as devulcanization aids.
  • [32] Zefeng, W., Yong, K., Zhao, W., & Yi, C. (2018). Recycling waste tire rubber by water jet pulverization: powder characteristics and reinforcing performance in natural rubber composites. Journal of Polymer Engineering, 38(1), 51-62.
  • [33] Reschner, K. (2008). Scrap Tire Recycling-A Summary of Prevalent Disposal and Recycling Methods. web sayfası: www. entire-engineering. de/Scrap_Tire_Recycling. pdf. erişim tarihi: 03.09.2018
  • [34] Lettieri, P., & Al-Salem, S. M. (2011). Thermochemical treatment of plastic solid waste. In Waste (pp. 233-242).
  • [35] Oh, M. S. (n.d.). Scrap Tire Liquefaction: Effect of Reaction Time and Temperature, web sayfası: https://www.cheric.org/proceeding_disk/kiche1998s/f-15.doc, erişim tarihi: 03.09.2018
  • [36] Ghavipanjeh, F., Rad, Z. Z., & Pazouki, M. (2018). Devulcanization of Ground Tires by Different Strains of Bacteria: Optimization of Culture Condition by Taguchi Method. Journal of Polymers and the Environment, 1-8.
  • [37] Rajan, V. V. (2005). Devulcanisation of NR Based Latex Products for Tyre Applications; Comparative investigation of different devulcanisation agents in terms of efficiency and reaction mechanism Enschede: Universiteit Twente
  • [38] Lloyd, C. A. (2004). Evaluation of waste tire devulcanization technologies. California Environmental Protection Agency, C, 2, 4.
  • [39] Sabzekar, M., Chenar, M. P., Mortazavi, S. M., Kariminejad, M., Asadi, S., & Zohuri, G. (2015). Influence of process variables on chemical devulcanization of sulfur-cured natural rubber. Polymer degradation and stability, 118, 88-95.
  • [40] Aoudia, K., Azem, S., Hocine, N. A., Gratton, M., Pettarin, V., & Seghar, S. (2017). Recycling of waste tire rubber: Microwave devulcanization and incorporation in a thermoset resin. Waste Management, 60, 471-481.
  • [41] Isayev, A. I., Yushanov, S. P., & Chen, J. (1996). Ultrasonic devulcanization of rubber vulcanizates. I. Process model. Journal of Applied Polymer Science, 59(5), 803-813.
  • [42] Edwards, D. W. (2016). Comparison of the technical and economic feasibility of devulcanisation processes for recycling waste tyres in South Africa (Doctoral dissertation, Stellenbosch: Stellenbosch University).
  • [43] Isayev, A. I., Liang, T., & Lewis, T. M. (2014). Effect of particle size on ultrasonic devulcanization of tire rubber in twin-screw extruder. Rubber Chemistry and Technology, 87(1), 86-102.
  • [44] Diaz, R., Colomines, G., Peuvrel-Disdier, E., & Deterre, R. (2018). Thermo-mechanical recycling of rubber: Relationship between material properties and specific mechanical energy. Journal of Materials Processing Technology, 252, 454 - 468.
  • [45] Mangili, I., Collina, E., Anzano, M., Pitea, D., & Lasagni, M. (2014). Characterization and supercritical CO2 devulcanization of cryo-ground tire rubber: Influence of devulcanization process on reclaimed material. Polymer degradation and stability, 102, 15-24.
  • [46] Romine, R. A., & Romine, M. F. (1998). Rubbercycle: a bioprocess for surface modification of waste tyre rubber. Polymer degradation and stability, 59(1-3), 353-358.
  • [47] Bredberg, K., Persson, J., Christiansson, M., Stenberg, B., & Holst, O. (2001). Anaerobic desulfurization of ground rubber with the thermophilic archaeon Pyrococcus furiosus–a new method for rubber recycling. Applied microbiology and biotechnology, 55(1), 43-48.
  • [48] Thaysen, A. C., Bunker, H. J., & Adams, M. E. (1945). 'Rubber Acid'Damage in Fire Hoses. Nature, 155(3933), 322.
  • [49] Torma, A. E., & Raghavan, D. (1990). Biodesulfurization of rubber materials (No. EGG-M-90382; CONF-901194-11). EG and G Idaho, Inc., Idaho Falls, ID (USA).
  • [50] Sato, S., Honda, Y., Kuwahara, M., Kishimoto, H., Yagi, N., Muraoka, K., & Watanabe, T. (2004). Microbial scission of sulfide linkages in vulcanized natural rubber by a white rot basidiomycete, ceriporiopsis s ubvermispora. Biomacromolecules, 5(2), 511-515.
  • [51] Chritiansson, M., Stenberg, B., Wallenberg, L. R., & Holst, O. (1998). Reduction of surface sulphur upon microbial devulcanization of rubber materials. Biotechnology letters, 20(7), 637-642.
  • [52] Li, Y., Zhao, S., Zhang, L., Wang, Y., & Yu, W. (2013). The effect of different Fe 2+ concentrations in culture media on the recycling of ground tyre rubber by Acidithiobacillus ferrooxidans YT-1. Annals of microbiology, 63(1), 315-321.
  • [53] Li, Y., Zhao, S., & Wang, Y. (2011). Microbial desulfurization of ground tire rubber by Thiobacillus ferrooxidans. Polymer Degradation and Stability, 96(9), 1662-1668.
  • [54] Yao, C., Zhao, S., Wang, Y., Wang, B., Wei, M., & Hu, M. (2013). Microbial desulfurization of waste latex rubber with Alicyclobacillus sp. Polymer degradation and stability, 98(9), 1724-1730.
  • [55] Li, Y., Zhao, S., & Wang, Y. (2012a). Improvement of the properties of natural rubber/ground tire rubber composites through biological desulfurization of GTR. Journal of Polymer Research, 19(5), 9864.
  • [56] Jiang, G., Zhao, S., Luo, J., Wang, Y., Yu, W., & Zhang, C. (2010). Microbial desulfurization for NR ground rubber by Thiobacillus ferrooxidans. Journal of Applied Polymer Science, 116(5), 2768-2774.
  • [57] Hu, M., Zhao, S., Li, C., Wang, B., Fu, Y., & Wang, Y. (2016). Biodesulfurization of vulcanized rubber by enzymes induced from Gordonia amicalisa. Polymer Degradation and Stability, 128, 8-14.
  • [58] Jiang, G., Zhao, S., Li, W., Luo, J., Wang, Y., Zhou, Q., & Zhang, C. (2011). Microbial desulfurization of SBR ground rubber by Sphingomonas sp. and its utilization as filler in NR compounds. Polymers for Advanced Technologies, 22(12), 2344-2351.
  • [59] Li, Y., Zhao, S., & Wang, Y. (2012b). Microbial desulfurization of ground tire rubber by Sphingomonas sp.: a novel technology for crumb rubber composites. Journal of Polymers and the Environment, 20(2), 372-380.
  • [60] Kim, J. K., & Park, J. W. (1999). The biological and chemical desulfurization of crumb rubber for the rubber compounding. Journal of applied polymer science, 72(12), 1543-1549.
  • [61] Kargi, F., & Robinson, J. M. (1984). Microbial oxidation of dibenzothiophene by the thermophilic organism Sulfolobus acidocaldarius. Biotechnology and bioengineering, 26(7), 687-690.
  • [62] Monticello, D. J., & Finnerty, W. R. (1985). Microbial desulfurization of fossil fuels. Annual Reviews in Microbiology, 39(1), 371-389.
  • [63] Krawiec, S. (1990). Bacterial desulfurization of thiophenes: screening techniques and some speculations regarding the biochemical and genetic bases. Developments in industrial microbiology, 31, 103-114.
  • [64] Romine, R. A., & Snowden-Swan, L. (1993). Chemi-microbial processing of waste tire rubber: A project overview (No. PNL-SA--23361). Pacific Northwest Lab..
  • [65] Tatangelo, V., Mangili, I., Caracino, P., Anzano, M., Najmi, Z., Bestetti, G., Collina, E., Franzetti, A., & Lasagni, M. (2016). Biological devulcanization of ground natural rubber by Gordonia desulfuricans DSM 44462T strain. Applied microbiology and biotechnology, 100(20), 8931-8942.
  • [66] Allan, K. M. (2018). The microbial devulcanisation of waste ground tyre rubber using acidophilic microorganisms (Doctoral dissertation, Stellenbosch: Stellenbosch University).
  • [67] Bredberg, K., Andersson, B. E., Landfors, E., & Holst, O. (2002). Microbial detoxification of waste rubber material by wood-rotting fungi. Bioresource Technology, 83(3), 221-224.

KAYNAK GÖSTER

Atıf tipi: APATercan Çataklı, Tuba Hande Ergüder. (2019). Biyo-devulkanizasyon: Atık Lastik Yönetiminde Çevre Dostu Bir Yaklaşım. Ulusal Çevre Bilimleri Araştırma Dergisi, 2 ( 1 ) , 20-34. http://ucbad.com/volume-2/issue-1/article-3/
Atıf tipi: BibTex@article{2019, title={Biyo-devulkanizasyon: Atık Lastik Yönetiminde Çevre Dostu Bir Yaklaşım}, volume={2}, number={1}, publisher={International Journal of Environmental Pollution and Environmental Modelling}, author={Tercan Çataklı, Tuba Hande Ergüder}, year={2019}, pages={20-34} }
Atıf tipi: MLATercan Çataklı, Tuba Hande Ergüder. Biyo-devulkanizasyon: Atık Lastik Yönetiminde Çevre Dostu Bir Yaklaşım. no. 2 International Journal of Environmental Pollution and Environmental Modelling, (2019), pp. 20-34.