Cilt 1 Sayı 1 Makale 4

Ankara’da Hava Kirliliği Mekânsal Dağılımının Modellenmesi

Modelling of Spatial Distribution of Air Pollution in Ankara

Yazar(lar): Hüseyin Toros 1, Serdar Bağış 2, Zeliha Gemi̇ci̇ 3,

Hava kalitesi canlı ve cansız varlıkları olumsuz olarak etkilediği için ölçme ve değerlendirme çalışmaları, tüm gelişmiş ülkelerde üzerinde çok çalışılan konulardan birisidir. Zaman ve mekân ölçeğinde hava kirliliği değerleri birçok etkene bağlı olarak değişir. Bir bölgedeki kirletici yoğunluğunun değişimi atmosfere salınan kirletici miktarları yanında meteorolojik şartlara ve topoğrafik yapıya da bağlıdır. Hava kirliliği değerlerini ölçme sisteminin pahalı ve zahmetli olması sebebiyle ölçüm yapılmayan bir noktadaki kirlilik yoğunluğunun zaman ve mekân ölçeğinde hesaplanması çalışmaları önemlidir. Gerçeğe yakın değerlerin hesaplanması için farklı yöntemler geliştirilmekte ve uygulanmaktadır. Kirliliğin modellenmesinde geoistatistik, doğrusal veya doğrusal olmayan modeller ileri veya geri yönde kurgulanarak farklı yaklaşımlar uygulanmaktadır. Kirletici yoğunluğunun mekânsal dağılımı için emisyon envanteri, meteorolojik ve topoğrafik şartlar değişik yöntemler ile katmanlar halinde birlikte kullanılması önemlidir. Bu çalışmada geliştirilen yöntemler zaman ve mekân ölçeğinde farklı katsayılar elde edilmesi ve farklı katmanlar halinde uygulanması temellidir. Bu yöntemde Ankara’da 8 noktada ölçümü yapılan veriler ve coğrafi şartları baz alınarak geri yönde modelleme ile istenilen noktalar için kirlilik yoğunluk haritası oluşturulmaktadır.



Anahtar Kelime(ler): Hava kalitesi, jeo-istatistik, modelleme,

As air quality adversely affects living and non-living assets, measurement and evaluation studies about air is one of the most searched topics in all developed countries. The values of air pollution at time and place scale vary depending on many effects. The change in pollutant density in a zone depends on the meteorological conditions and the topographical structure as well as the amounts of pollutants released into the atmosphere. Calculation of the concentration of pollution at an unmeasured point at time and place scale is important because of the expensive and onerous measurement systems. Different methods are being developed and applied to calculate close to the truth values. Various approaches to modelling pollution are applied as geostatistics, linear or nonlinear models are being constructed in forward or backward direction. The use of emission inventory with meteorological and topographic conditions with different methods and layers is important for the spatial distribution of pollutant intensity. The methods developed in this study are based on obtaining different coefficients at time and place scale and applying them as different layers. In this method, pollution density map is created for the desired points by backward modelling based on data and geographical conditions measured in 8 points in Ankara.



Keyword(s): Air quality, geo-statistics, model, distribution,

  • [1] Toros H., Geertsema G., Cats G., Incecik S., 2011, Analysis of HIRLAM NWP Model During an Air Pollution Episode in Istanbul in 2009, Air Pollution Modeling and its Application XXI, 119--123, ISBN:978-94-007-1358-1, DOI 10.1007/978-94-007-1359-8_21, Springer Netherlands.
  • [2] Baklanov, A., Korsholm, U., Mahura, A., Petersen, C., and Gross, A., 2008, ENVIRO-HIRLAM: On-line Coupled Modelling of Urban Meteorology and Air Pollution, Advances in Science and Research, 2, 41-46.
  • [3] Jerrett, M., et. al, 2005, A Review and Evaluation of Intraurban Air Pollution Exposure Models, Journal of Exposure Analysis and Environmental Epidemiology, 15, 185–204.
  • [4] Beelen, R., Voogt, M., Duyzer, J., Zandveld, P., and Hoek, G., 2010, Comparison of the Performances of Land Use Regression Modelling and Dispersion Modelling in Estimating Small-Scale Variations in Long-Term Air Pollution Concentrations in a Dutch urban area, Atmospheric Environment 44, 4614-4621.
  • [5] Beelen, R., et al, 2013, Development of NO2 and NOx Land Use Regression Models for Estimating Air Pollution Exposure in 36 Study Areas in Europe, Atmospheric Environment, 72, 10-23.
  • [6] Shad, R., Ashoori, H., and Afshari, N., 2008, Evaluatıon of Optımum Methods for Predicting Pollution Concentration in GIS Environment, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing.
  • [7] Merbitz, H., Buttstädt, M., Michael, S., Dott, W., and Schneider, C., 2012, GIS-Based İdentification of Spatial Variables Enhancing Heat And Poor Air Quality in Urban Areas, Applied Geography 33, 94-106.
  • [8] Beelen,R., Hoek, G., Pebesma, E., Vienneau, D., Hoogh, K., and Briggs D, J., 2009, Mapping of Background Air Pollution at a Fine Spatial Scale Across the European Union, Science Of The Total Environment, 407, 1852-1867.
  • [9] Janssen, S., Dumont, G., Fierens, F., and Mensink, C., 2008, Spatial interpolation of Air Pollution Measurements Using CORINE Land Cover Data, AtmosphericEnvironment, 42, 4884–4903.
  • [10] Jef, H., Clemensa, M., Gerwinb, D., and Fran, F., 2006, Spatial Interpolation of Ambient Ozone Concentrations From Sparse Monitoring Points in Belgium, Journal of Environmental Monitoring, 8, 1129-1135.
  • [11] Matejicek, L., 2014, Using Geostatistical Tools for Mapping TrafficRelated Air Pollution in Urban Areas, International Environmental Modelling and Software Society (iEMSs) 7th Intl. Congress on Env. Modelling and Software, San Diego, CA, USA.
  • [12] Leelossy, A., Molnár, F., Izsák, F., Havasi, A., Lagzi, I., and Mészáros, R., 2014, Dispersion Modelling of Air Pollutants in The Atmosphere: A Review, Central European Journal of Geosciences, 6(3), 257-278.
  • [13] Hoogh, k., et al, 2014, Comparing Land Use Regression And Dispersion Modelling to Assess Residential Exposure to Ambient Air Pollution for Epidemiological Studies, Environment International, 73, 382–392.
  • [14] Hoek, G., Beelen,R., Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P., and Briggs, D., 2008, A Review of Land-Use Regression Models to Assess Spatial Variation of Outdoor Air Pollution, Atmospheric Environment, 42, 7561–7578.
  • [15] Enkhtur, B., 2013, Geostatistical Modelling And Mapping of Air Pollution, web sayfası: https://www.itc.nl/library/papers_2013/msc/gfm/enkhtur.pdf.
  • [16] Akyürek,Ö., Arslan,O., Karademir,. A., 2013, SO2 ve PM10 hava kirliliği parametrelerinin cbs ile konumsal analizi: kocaeli örneği, TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi, Ankara.
  • [17] Toros, H., and Bağış, S., 2017, Hava Kirlilik Modellerinde Kullanılacak Emisyon Envanteri Oluşturulması için Yaklaşımlar ve İstanbul Hava Kirliliği Dağılımı Örneği, Çukurova University Journal of the Faculty of Engineering and Architecture, 32(2), 1-12.

KAYNAK GÖSTER

Atıf tipi: APA

Toros, H , Bağış, S , Gemi̇ci̇, Z . (2018). Ankara’da Hava Kirliliği Mekânsal Dağılımının Modellenmesi. Ulusal Çevre Bilimleri Araştırma Dergisi, 1 ( 1 ) , 20-53. Retrieved from https://ucbad.com/volume-1/issue-1/article-4/

Atıf tipi: BibTex

@article{2018, title={Ankara’da Hava Kirliliği Mekânsal Dağılımının Modellenmesi}, volume={1}, number={1}, publisher={Ulusal Çevre Bilimleri Araştırma Dergisi}, author={Hüseyin Toros, Serdar Bağış, Zeliha Gemi̇ci̇}, year={2018}, pages={20-53} }

Atıf tipi: MLA

Hüseyin Toros, Serdar Bağış, Zeliha Gemi̇ci̇. Ankara’da Hava Kirliliği Mekânsal Dağılımının Modellenmesi. no. 1 Ulusal Çevre Bilimleri Araştırma Dergisi, (2018), pp. 20-53.